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The method of matched asymptotic expansions, recently developed for treating 
singular-perturbation problems, 
of high aspect ratio. 

is applied to the flat unswept lifting wing 
This yields a simplified equivalent of Prandtl's 

lifting-line theory, with the solution of an integral. equation replaced by 
quadratures. The next approximation Is calculated in general terms. Specific 
application Is made to cusp@, lentlcular, elliptic and rectangular planforms, 
and comparison drawn where possible with previous work. Additional non-uni- 
formities at tips and other dlseontlnultles are described, and procedures 
outlined for their correction. 

A perturbation problem is called singular If a straightforward expansion 
is invalid In some part of the field of Interest. We can anticipate such 
non-uniformity in fluid mechanics whenever a problem contains two character- 
istic lengths and we apprqximate for small values of their ratio. 

The prototype of singular-perturbation problems is Prandtl's boundary- 
layer theory, where we seek a first approximation for small ratios of the 
viscous length v/V to a typical geometric length. A systematic procedure 
for calculating higher approximations in such problems has been developed at 
California Institute of Technology by Lagerstrom, Kaplun and Cole [l] and[2]. 
This method of matched asymptotic expansions has been applied to a variety 
of viscous flows. 

Recently at Stanford University we have applied the method also to a num- 
ber of inviaeid flows. Yakura [3] has treated the entropy layer produced by 
slightly blunting a pointed body at hypersonic speed. Runson (unpublished) 
is exploring the vertical layer on an Inclined cone at supersonic speed. The 
present paper is devoted to a re-examlnatlon of the classical theory of high- 
aspect-ratio wings In subsonic flow. 

In contrast to his boundary-layer theory, Prandtl's lifting-line theory 
was only recently recognized as a singular-perturbation problem. It yields 
an asymptotic solution for vanishing ratio of chord to Span. The role of 
these two disparate reference lengths was recognized by Priedrichs [4-1, who 
reproduced Prandtl's integral equation in a pioneering application of the 
method of matched expansions. Here we show how systematic use of the method 
simplifies that result by reducing It to quadratures, and Provides the next 
approximation. 
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1. Matolaed rrymptotlo l aqmrlonr, Consider for simplicity a flat wing 

of zero thickness, whose planform is symmetric in the chordwise as well as 

the spanwise direction (Pig. la); also, let the angle of attack c be so 

small that only linear terms are significant. Take the free-stream speed 

and the semispan as units of velocity and length. Let the wing lie in the 

plane y = 0, to which the stream is inclined from below. 

a b c 

Fig. 1 

It is convenient to describe the planform by x = Ifi A-‘h(s), where A 

is the aspect ratio, a is the spanwlse coordinate, and the half-chord h Is 

a function of order unity. Ye suppose temporarily that ?t is as smooth as 

may be necessary; the consequences of ignoring this restriction at blunt 

tips will be faced later. 

The full problem for the velocity potential 9 is 

lFXX 3-%,!J +Q)bls = 0 (equation of motion) (1.1.1) 

(py = 0 

I94 

for 9/ = 0, 12 I\< A-1 h (s), 1 s I\< 1 (tangency 
condition) 

cpws+cV (upstream condltlon) 

I(PlfI1 l%l< O”, for y = 0, x = A-‘h {s), 1 s I< 1 

(Kutta-Zhukovskii condition) 

(1.12) 

(1.1.3) 

(1.1.4) 

1.1. The outer limit. Now let the aspect ratio A become 
Infinite with .v, y, s fixed. We call this the outer limit process - and x, 

u, a, cp outer variables - because the mafor dimension is used as reference 

length. The wing shrinks to a line (Pig. lb), In which are concentrated all 

the singularities that may be used to represent It. 

It Is clear that in this limit the disturbances produced by the wing 

vanish like A-‘. Thus the outer llmlt is simply the uniform stream. If we 

keep 'small perturbations of 0rder.A -I it 1s plausible (and will be confirmed 

later by matching) that the complete system of singularities Is approximated 

by a bound line vortex of unknown variable circulation 

I' (a; A) - A-9, (s) (1.2) 
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Associated with the spanwlse variation are free vortices that trail back- 

ward approximately In the free-stream direction but may, for small a, be 

taken to lie In the plane of the wing y = 0. 

'This Is the familiar vortex system of Prandtl's lifting-line theory. Its 

velocity potential Is 

1 do (1.3) 

1.2. The Inner limit Unfortunately It Is now too late 

to find the bound vortlclty yz. It could have been determined by Imposing 

the Kutta-Zhukovskll condition at the trailing edge; but such detail has 

been lost In the outer llmltlng process. To recover that dTtal1, we magnify 

the coordinates so that they are referred to a typical chord rather than the 

semi-span. We correspondingly magnify the velocity potential, so that all 

variables are of order unity near the wing. Thus we Introduce Inner varla- 

bles, denoted by capital letters, by setting 

cp = A-'Q(X, Y, s), x =A5, 

Then the full problem (1.1) becomes 

@xx + Qyy +n-2@8s = 0 

cDy=o. at Y=O, ~Xl<h(s), 

CD-X t_aY (upstream) 

Y = Ay (1.4) 

(1.5.1) 

lsldi (1.5.2) 

(1.5.3) 

10x1, P'YI, I@sI<=J at Y=O, X=h(S), lSl<i (1.5.4) 

Setting A = m gives the problem for the Inner limit (Pig. lc). It Is 

evidently that of plane flow past a flat plate, the spanwlse coordinate s 

appearing only parametrically In h(s). The velocity potential Is 

OD, = X + a Im [(Z2 - h2)% - h coti-’ (2 l/z)], 2 = X+iY (~-6) 

We were not strictly justified here in Imposing the free-stream condition 

(1.5.3), because the Inner solution Is Intended to hold only near the wing. 

However, the appllcablllty of that condition Is justified by matching the 

Inner and outer solutions, using the restricted matching principle cl]: 

m-term Inner expansion of 
of (m-term Inner expansion \ 

P-term outer expansion) = p-term outer expansion 
(1.7) 

It would suffice to take m = p = 1; but In the next step we will need 

m = 1 and p = 2. We therefore calculate at once the e-term outer eXpmSiOn 

of the Inner limit. This Is found by rewriting cp = A-'@,, In ou%er vari- 

ables, expanding for large A, and keeping secondary as well as leading terms 

2-outer (l-inner) 'p =(5 +ay)_aq tan-1 $ (1.8) 

The first term justifies our use of the upstream condition. The second 

term Is the plane potential due to a vortex at the Origin, of circulation 
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r = r, = haA-‘h (s) (W 
1.3. Second approximation . To proceed formally, 

we would seek solution of the outer equations whose inner limit was (1.8). 

However, we have already constructed such a solution by physical reasoning, 

as the lifting-line potential (1.3). It remains only to determine the vor- 

ticity yz appearing there by matching with the Inner limit. The result is 

evident physically from the fact that the circulation is the same about any 

two curves enclosing the same vortex lines (Fig. 1). Hence (1.2) and (1.9) 

can be equated, giving 

rz (s) = 2nah (s) (1.10) 

Then substituting into (1.3) yields the 2-term outer expansion 
. 

as A + CO with 2, y, s fixed 

In the next step we will need the 2-term inner expansion of this result, 

Divergent integrals are avoided by differentiating with respect to s and 

Integrating under the integral to obtain the alternative form (1.112) 

-1 

This strategem, which will be repeated later, is familiar from slender- 

body theory [5]. Now introducing inner variables and expanding gives 

2-inner (2-outer) 

cp= ~[x+au-crh(s) -$+ 

__zy \E&&f 
(1.12) 

-1 

The Cauchy principal value of the integral is indicated for the USUal 

reason. The first term agrees with (1.8) t o confirm our physical matching 

argument. 

We now return to the inner expansion and seek a second approxlmation. 

Equation (1.5.1) would suggest a correction of relative order AVa, but match- 

ing with (1.12) shows that a term of relative order A-*intervenes. We there- 

fot,e make the inner expansion 

cp -A-‘C’,(X,Y,s) +A-2(D2(XrY,~) +. . . (1.13) 

as A-0 with X, Y, s fixed 

Substituting into the full problem (1.5) shows that 9,, like m,, satisfies 

Laplace's equation in the X-Y plane with zero velocity normal to the wing. 

In matching with (1.12), the coefficients of Y indicate that +z is simply 

the result of reducing the angle of attack in-the flat-plate SolUtion (1.6) 
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from its geometric value a to an effective value aer where 

This is a familiar result of lifting-line theory [6]; the trailing-vortex 

system induces downwash velocities near the wing that are constant across 

the chord at each spanwise station, and so act to reduce the apparent angle 

of attack of that section. Rowever, our procedure has reduced the calcula- 

tion to a quadrature, rather than the solution of an integral equation, by 

taking advantage of the fact that the downwash angle is small compared with 

the geometric angle of attack. 

The e-term inner expansion is given by (1.6) with a replaced by a, 

from (1.14) 

‘p - 4 + 5 [I _ ?$ \ s] Im [(z2 - h”)% - hcahh- (z_)] 
-1 (1.15) 

1.4. Third outer approximation. Before compa- 

ring our solution with the classical theory, we persevere to find the next 

approximation. Introducing outer variables into (1.15) and expanding gives 

3-outer (2-inner) 

Repeating the previous 

vortices has been refined 

Here we introduce 

argument shows that the circulation of the bound 

from (1.9) to 

1 l h'(a)& -- s 1 - =‘LnaA-‘[h 
2A s-a 

-1 

(4 tfha (41 (1.47) 

(1.18) 

representing the second-order change in half-chord for a fictitious wing 

having in the first approximation the same lift as the actual wing has in 

the second approximation. 

In addition to this change in vorticity, the last term in (1.16) shows 

the appearance at this stage of the next higher singularity in the loaded 

line. We call this a divortex (although it may be regarded as a dipole with 

vertical axis) to emphasize that it is the x-derivative of a Vortex, repre- 

senting physically the first moment of the distributed vorticity of the 

lifting surface. The divortex strength is A-A3dg, where 

68 (~1 = nab (~1 (1.19) 
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The potential of a spanwise distribution of 

rivative of that (l..3) for vortices. Thus the 

found to be 
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divorfices is just the x-de- 

3-term outer expansion is 

As before, divergent integrals in the inner expansion are avoided in the 

integrals of order A-" by differentiating twice more with respect to s and 

integrating under the integral sign. Then some computation gives the 3-term 

inner expansion of (1.20) 

3-inner (3-outer) 
(p+x +a{Y -h(s) tar‘ g+ 

1 
-I- _zh2 (4 p+yr ‘)l+ & pt (s) m-1 g-Y] ps+ 

-1 

+- l”gAa [X-Yh” (s) + Y (hh’)‘j + 
2A’ 

-1 

-+ y (log &p -- + +) (M’)’ + xy (log v&-j- ; + ; *err’ $) x 

xh’(s)+;XYd; Ih(o)sg*(s--o)logls-o,do+ 
-1 

-+$Y& ~h~(c+3gn(S-~)log Is-crp] (1.21) 
-1 

The first two terms agree with (1.16) as a check on matching. 

1.5. Third inner approximation. We return once 

more to the inner expansion to find the first Improvement on Prandtl's theo- 

ry. The differential equation (1.5.1) would suggest that the next term in 

(1.13) Is of order A”, but matching with (1.21) shows that a logarithmic 

term intervenes. Thus we continue the inner expansion as 

(P- A -'Q>, + A-*@, + A+ log A@,, + A-W,, + . . . (=?I 

The notation is designed to indicate that the third approximation is 

properly regarded as consisting of the two terms In Ab310g A and Am3, be- 

cause for practical purposes the logarithm is of order unity. 

As usual, the logarithmic term is much simpler to calculate than its 

algebraic companion. Substituting into (1.5) shows that &, satisfies the 

two-dlmensional Laplace equation and the conditions of zero velocity normal 

to the plate and finite velocity at the trailing edge. Matching with (1.21) 

gives the remaining boundary condition as 



@)32 + a [Y (hh’)’ + XYhnl (1.23) 

The first term in the bracket implies, as before, a slight increase in 

the effective angle of attack. The second term represents curvature of the 

streamlines in the vicinity of the wing, induced by the trailing vortex my:;- 

tern. This is nullified by adding the thin-airfoil solution for a paraboli- 

cally cambered airfoil. Thus the coefficient of the logatithmic term i:; 

found to be 

@,, = +a Im [2 (hh’)’ {(Z2 - hz)‘/z - h mh-’ (2 / h)} + 

+ h” (2 (22 - hy - h2 CQxh-’ (2 / h)}] 

For the coefficient of the algebraic term, substituting (1.22) and (1.6) 

into (1.5.1) gives the differential equation 

CD ill_yX + %lyy = a Im [(hh’)’ (Z2 - h?)-‘/z - h-1 (hh’)’ 2 (22 _ 9-Y+ 

-+(hV)2 (2’ - h2)+ - hhf2Z (z2 - h2)-‘A + h” cash-l (2 / h)l (‘1.25) 

Introducing the conjugate complex variables Z = X t tY and % = x - iY 

facilitates finding the particular integral 

(Dg) = f aImZ [a'2 (22 - h2)-'/, _ h'2Z (22 _ ht)-'/z - (1.264 

- (2h” + h’2h-‘) (Z2 - @)‘/I + (hh’)’ CA,-’ (2 /h) -I- h”Z msh-’ (2 I h)] 

A complementary solution of the homogeneous equation that preserves tan- 

gency, restores the Kutta-Zhukovskii condition, and provides matching with 

the last term in (1.21)\is found by inspection to be (1.26.2) 

(I$)=? Im 
4 

[{(log 4 + 2) h” + ; $ \ h (a) sgrl (s - o)iog 1 s - 6 1 dc} x 
-1 

x (2 (Z2- ha)“’ - h” 
1 

CQSII-’ ;, + { _ 2.; 5 ‘!! + (2 log + + 1) (Ah’) - 

- h12 + Gd$ \ h2 (0) sgn (s - a) 1;; 1 s - Q 1 da } {(Z’ - h2)“’ - 

- h cash-‘;} _ jf;;costv-‘;_ (hh’)‘Z cowf+h(2hh”+;h’2) co&Il-I_-_ 
, 

h”] 

1.6. Third-order circulation and lift. 

The circulation f is tit times the coefficient of log (X2 + y”)” Or 

cash-' (Z/h) in the expansion for cp . mus (1.22), (1.15), (1.24), (1.26.1) 

and (1.26.2) give 
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r I i1 h’(a) da -- Y 
ra,= 2A s-a 5 ++$P + 3hV) + 

4AI 
-1 

(1.27) +4AI 
' [(Zlog;-$P+(3log;++‘- 

-2; 3&w&! + f h f 5 h (6) sgn (s - a) log I s-+a+ 
-1 -1 

+ $--$ 5 h2 (0) sgn(s - 6) log 1 s - 6 1 da1 + . . . 
2 

-1 

Here Trn 1s the two-dimensional v ralue (1.9). A table for the first two 

Integrals Is given In [7]. The last 

two are conveniently calculated as the 

finite parts of divergent integrals 

1 
d 

6 \ g(a) sm (s - a)logIs--aldo = 
21 

1+s l--s 
(1.2y 

= f.p.[ \ 

6 

g(y)& + \ gE$q 

0 

Fig. 2 

The lift Is related to the circulation by the Kutta-Zhukovskll law. 

Hence the lift-curve slope Is re,ated to (1.27) by 

“CL 
1 

-=2n 
da s 

h(s) fds 
m 

0 

(1.29) 

2. Appliortion to & family of planform. We assess the utility of the 

foregoing formal analysis by applying It to the family of planforms shown 

In Fig. 2. These are described by 

h (s) = k, (1 - sy” n (+ [i (1 - Spds]~l) (2.1.1) 
0 

The aspect ratio coefficient k, for n = 0,1,2,3 Is equal respectively 

k, = 1, kl=$ k2 =;, k3 ==; (2.12) 

Because we anticipate complications at the blunter tips, we consider the 

smoothest shape first. 

2.1. Cusped planform. The cusp-tipped wing of Flg.2a Is 

described by 
h (s) = %(I - 9)" (2.2) 

Equation (1.27) gives the bound circulation as 
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r _= 1 -&.I-‘(1 
ra, -2&q-$A-~logA(i-sy(1-4s2)x (2.3) 

x SB A-2 [(I - s2) {(I - 2s2) log 2 - 2 (I--59) log (I- s2) - 

-3 (1 - 49) log 3n 
4 (1 - sp 

- ; (1 -t 7s2) + 2 (1 - sy x 

x(1-s sic’s)} + 4 (l-16$ - 5s4) + $ (9 - 4w + 40&q] 

This planform Is so smooth that no complications arise from the tips, 

(2.3) being uniformly valid across the span. 

2.2. Lentlcular planform. For the lenticular wing 

of Fig. 2b, described by 

h(s) =$(I-?) (2.4) 

the circulation is found to be 

r 

Too = 
1 - & (2 - s log E) --p$(3-7?)-_pj[;(1-33se) x 

(2.5) 
--in2 + (3-7s) log 3 v;_;z + 2s(3--s2) log 2 - f + ; $1 

This result is not uniformly valid. It breaks down within an exponential- 

ly small distance of either tip, where the logarithm becomes so large that 

each term Is of order unity. The difficulty arises from the fact that the 

flow at the tip does not become two-dimensional no matter how great A is. 

However, the singularity is so weak that (1.29) gives the correct lift-curve 

slope 
dCL -=2~~~-~A-1-~A-zlogA+(~~~2-~1,,g~+ 
da _ 

+;log2--)A-a+...] (2.6) 

The non-uniformity could be corrected by constructing a third expansion, 

valid in the Immediate vicinity of the tip, and matching it to the inner 

expansion. However, the result of this process can be deduced without carry- 

ing out the details. Because the region of non-uniformity Is exponentially 

small, the tip must be magnified so much that to any order it resembles an 

infinite lifting triangle (Fig. 2b). There Is then no characteristic length 

In the problem. The potential must therefore be a homogeneous function of 

the space coordinates; In spherical polar coordinates it will have the form 

'Ptip - flf ((4 44 (2.7.1) 

The exponent p will reduce to unity'in the limit as A - m, where the 

vertex angle of the triangle vanishes; for finite A it will have the form 

(2.7.2) 

The circulation Is proportional to one less than this power of the span- 

wise distance t from the tip 
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Qlp o. tq-1 = p) lot? t _+y?J logt+~(~+...)log2t+... (2.8) 

The last expansion, valid only far from the tip, can be used for matching 

with the inner solution. Introducing t = 1 f s Into (2.5) gives 

lY 1 -- 
l-00 - 2; log t + $ -& [ log2 t + 2 (1 - log 2) log t] (2.9) 

I.4 and comparing with (2.8) shows 
I . 

2 i 
I I I 

f/Z f&/5 that c1 /A = 3 / u (the ratlo 

I*- 
6 

t- t --I 

of root chord to span) and 

c2= 9(1 - log 2) I4. Thus 

2.3. Elllp 

2c, described by 

tic planform. For the elliptic wing of Fig. 

k (s) = $ (1 - 5-2)” 

the circulation Is found to be 

the circulation Is rendered 

uniformly valid by extracting 

a factor 

(1 - 4 -cJA+c,fA'+.'. 

that accounts for all the loga- 

rithmically singular terms. 

This correction parallels that 

made for the sharp-edged two- 

dimensional airfoils and bodies 

of revolution in [8]. 

Fig. 3 

l- 1 2 4 c= ---XI A 1~3~+f~[~+~2-log(1--)+ ‘Lp 1-g 

+ -+$log log 2 
i-s= Jf& 1 (2.11) 

(2.10) 

This result evidently breaks down when the distance from the tip Is of 

order A-=, that is, of the order of the radius of curvature of the tip. 

However,the circulation Is still Integrable, and gives 

dCL -=,[,_~-~~+~(:+,-,l,.)~] (2.12) 
da 

The first two terms are the expansion of Prandtl's famous result for the 

elliptic wing 
dCL 2n 
-=1+2/A da 

(2.13) 

This form has the advantage of vanishing at A = 0, though with twicethe 

correct slope of slender-wing theory. Big. 3 shows that our expanded form 

is the more accurate above A = 5. 
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We can recast our third approximation into a form analogous to Prandtl's. 

If we also replace the aspect ratic A by the ratio k’ of minor to major 

axes according to k'= 4/r~A , ,Rxpression (2.12) assumes the simpler appearance 

5. = 2q1+ $d + (log j$ - g) q-l da (2.14) 

Krienes [9] has extracted an asymptotic result of this sort from his 

lifting-surface theory. However, he has 63/128, in place of our +, and $ 

instead of g. His "/lza is Inexplicable in view of Prandtl's result; the 

5 appears to be a slip, because our correction reduces the error, compared 

with Krienes' own lifting-surface result (Fig.3), from 13 to one percent at 

k’ =*. Even for the circular wing (2.14) is only 12 percent high. The 

non-uniformity of the solution near the tip could again be corrected by con- 

structing a supplementary expansion for that region. The t,ip problem would, 

in the first approximation, be that for a semi-infinite parabolic wing (Fig. 

2c). This challenging potential problem has not yet been attempted. 

2.4. Rectangular planform. The rectangular wing of 

Fig. 2d Is best described by 

h(s) = H (1 - 9) (2.15) 

where x Is the Heavlslde step function, with the Dirac delta function as 

Its derivative. Otherwise it is necessary to make the replacement 
1 1 

s 

h'(a) da d 
---+ds c 

h (G) do 
S-U S---B 

-1 -1 

The first two terms of (1.27) give 

(2.16) 

but the subsequent terms contain singular functions and divergent Integrals, 

and must be considered meaningless. Our solution now evidently breaks down 

at distances from the tip of the order of the chord length. The circulation 

Itself behaves near the tip like 

r -_I__?+.._ 
I’, 

(2.17) 

where o is,the chord and t the distance from the tip. This cannot be 

integrated to find the lift. 

These defects could be corrected by Isolating the tip (Fig. 2d) and Sol- 

ving the problem of a lifting semi-infinite rectangular strip. Stewartson 

[lo] has done this within the framework of Prandtl's lifting-line theory. 

Far from the tip his solution behaves like 

r 1 r;-, - -~+($J’(log~+7)+~*~ (r = 0.5772.. .) (2.18) 

In agreement with (2.17). Stewartson uses his result to calculate the lift 
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of a finite rectangular wing. Probably the details would be altered by a 

lifting-surface treatment. 

The foregoing analysis can be Immediately extended to subsonic compressl- 
ble flow using Gsthert slmllarlty rule, because of the linearizing assump- 
tions. Calculation of nonlinear effects would require substantial addltlon- 
al analysis. 

It would be of Interest to extend the solution to the notorious problem 
of the swept wing. (A beginning was made In 1955 by Clolkowskl [ll] at the 
suzaestlon of Frledrlchs). Non-uniformity Is to be antlclDated at the root 
juzcture, where the method of matched asymptotic expansions would require 
the lifting-surface solution for an Infinite V-wing. Similar non-unlforml- 
ties would appear at other planform dlscontlnuitles, deflected allerons,etc. 

Indeed, the three-dimensional lifting wing Is a veritable treasure-trove 
of non-unlformltles. One would treat more general airfoil sections bymaklng 
the thin-airfoil approximation. This Introduces further non-uniformities 
at leading and trailing edges, which can be corrected by still other local 
examinations [ 81. Finally, tt-e solution Is not valid far downstream, where 
the vortex sheet rolls up [12]. 

The author's attention was drawn to this problem by discussions with 

M. Landahl and K.O. Frledrichs. He has also benefited from stimulating dls- 

cusslons with N. Rott, 1. Fliigge-Lotz and D. Spence. 
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